姓  名: 王冰
    职  称: 研究员
    职  务:
    电话/传真: 010-64806579
    电子邮件: bingwang@genetics.ac.cn
    实验室主页:
    研究方向: 植物激素分子遗传机理

    简历介绍:

    王冰,博士,研究员
        2019年入选中科院青年创新促进会会员,2021年获国家自然科学基金委“优秀青年基金”资助,2023年入选中科院青年创新促进会优秀会员,以第一或通讯作者在Cell、Nature、Mol Plant、Plant Cell、PNAS、Annu Rev Plant Biol等国际期刊发表论文20余篇,撰写植物激素学术专著《Hormone Metabolism and Signaling in Plants》中“Strigolactones”章节。获全国创新争先奖奖牌、第二届优秀女青年奖以及NSR学科编辑组优秀成员,担任JIPB 编委、The Innovation 青年编委、The Innovation Life编委、NSR学科编辑组成员以及中国遗传学会农业蛋白质组分会委员。支持国家重点研发计划课题、中国科学院战略性先导科技专项(B类)课题、中国科学院战略性先导科技专项(A类)子课题、国家自然科学基金委面上项目,参与中国科学院稳定支持基础研究领域青年团队计划、国家重点研发计划等项目。
    教育经历
        2000 - 2004,山东师范大学,学士
        2004 - 2011,中国科学院遗传与发育生物学研究,博士
    工作经历
        2011 – 2017,中国科学院遗传与发育生物学研究所,助理研究员
        2018 –2020,中国科学院遗传与发育生物学研究所,副研究员
        2021 – 2025,中国科学院遗传与发育生物学研究所,青年研究员
        2025 – 今,中国科学院遗传与发育生物学研究所,研究员

    研究领域:

    研究内容
        重点研究新型植物激素独脚金内酯的合成及作用机理,在独脚金内酯调控作物株型和环境适应性领域取得系列原创性成果,为减肥增产和抗病增产的分子设计育种提供了新靶点和新方案。1)发现了独脚金内酯信号感知的激活、终止和调控机制,揭示了低氮通过翻译后修饰调控独脚金内酯受体D14的稳定性,进而增强信号感知抑制分蘖发育的核心机制,进一步通过定向改良独脚金内酯受体D14的磷酸化位点,在水稻中实现了“减氮肥不减分蘖”。2)突破独脚金内酯信号途径研究瓶颈,通过新的化合物鉴定了独脚金内酯早期响应基因,发现了植物激素信号转导中的一类新型双功能抑制蛋白,首次报道了独脚金内酯和烟素途径的抑制蛋白具有非转录调控活性。3)发现了独脚金内酯在作物根际微环境中的新功能。一方面鉴定了番茄中负责独脚金内酯向根外分泌的转运蛋白,首次实现了作物广谱寄生抗性与生长发育的平衡,在新疆列当侵染的田间实现了番茄产量提升30%以上;另一方面发现根际细菌通过分泌小分子化合物环二肽直接结合水稻独脚金内酯的受体D14,进而激活独脚金内酯信号转导,抑制水稻分蘖发育,揭示了根际微生物组调控作物株型的全新机制。

    社会任职:

    获奖及荣誉:

    承担科研项目情况:

    代表论著:

    代表论著
    (#Co-first author; *Corresponding author)
    1.  Zhang J#, Wang B#, Xu H#, Liu W#, Yu J#, Wang Q#, Yu H#, Wei J#, Dai R, Zhou J, He Y, Zou D, Yang J, Ban X, Hu Q, Meng X, Hu B, Wang M, Xin P, Chu J, Li C, Garrido-Oter R, Yu P, Dijk A, Dong L, Bouwmeester H, Gao S*, Huang A*, Chu C*, Li J*, Bai Y*. (2025). Root Microbiota Regulates Tiller Number in Rice. Cell (In press)
    2.  Ban X, Qin L, Yan J, Wu J, Li Q, Su X, Hao Y, Hu Q, Kou L, Yan Z, Xin P, Zhang Y, Dong L, Bouwmeester H, Yu H, Yu Q, Huang S, Lin T, Xie Q, Chen Y, Chu J, Cui X*, Li J*, Wang B*. (2025). Manipulation of a strigolactone transporter in tomato confers resistance to the parasitic weed broomrape, The Innovation 6(3):100815.
    3.  Shi J, Mei C, Ge F, Hu Q, Ban X, Xia R, Xin P, Cheng S, Zhang G, Nie J, Zhang S, Ma X, Wang Y, Chu J, Chen Y, Wang B, Wu W, Li J*, Xie Q*, Yu F*. (2025). Resistance to Striga parasitism through reduction of strigolactone exudation. Cell. S0092-8674(25)00086-8.
    4.  Hu Q, Liu H, He Y, Hao Y, Yan J, Liu S, Huang X, Yan Z, Zhang D, Ban X, Zhang H, Li Q, Zhang J, Xin P, Jing Y, Kou L, Sang D, Wang Y, Wang Y, Meng X, Fu X, Chu J, Wang B*, Li J. (2024). Regulatory Mechanisms of Strigolactone Perception in Rice. Cell 187(26):7551-7567.
    Highlighted with Spotlight article in Dev. Cell, 60(1): 5-7
    Highlighted with Spotlight article in Mol. Plant, 18(1): 14-16
    Highlighted with Spotlight article in Trends Plant Sci., S1360-1385(24)00352-2
    Highlighted with Spotlight article in Chin Bull Bot 59(6): 1-5
    5.  Chang W#, Qiao Q#, Li Q, Li X, Li Y, Huang X, Wang Y, Li J, Wang B*, Wang L*. (2024). Non-transcriptional regulatory activity of SMAX1 and SMXL2 mediates karrikin-regulated seedling response to red light in Arabidopsis. Mol. Plant 17(7):1054-1072.
    6.  Ye H, Hou Q, Lv H, Shi H, Wang D, Chen Y, Xu T, Wang M, He M, Yin J, Lu X, Tang Y, Zhu X, Zou L, Chen X, Li J, Wang B*, Wang J*. (2024). D53 represses rice blast resistance by directly targeting phenylalanine ammonia lyases. J. Integr. Plant Biol. 66(9):1827-1830.
    7.  Cheng Q, Li J, Wang B*. (2024). ABP1/ABLs and TMKs form receptor complexes to perceive extracellular auxin and trigger fast phosphorylation responses. The Innovation Life 2(2): 100063.
    8.  Luo M*, Yang W, Bai L, Zhang L, Huang J, Cao Y, Xie Y, Tong L, Zhang H, Yu L, Zhou L, Shi Y, Yu P, Wang Z, Yuan Z, Zhang P, Zhang Y, Ju F, Zhang H, Wang F, Cui Y, Zhang J, Jia G, Wan D, Ruan C, Zeng Y, Wu P, Gao Z, Zhao W, Xu Y, Yu G, Tian C, Jin L, Dai J*, Xia B*, Sun B*, Chen F*, Gao Y*, Wang H*, Wang B*, Zhang D*, Cao X*, Wang H*, Huang T*. (2024). Artificial intelligence for life sciences: A comprehensive guide and future trends. Innov Life 2(4): 100105.
    9.  Li Q, Wang B, Yu H*. (2024). New mechanism of strigolactone-regulated cold tolerance in tomato. New Phytol. 245(3):921-923.
    10.  Yuan K#, Zhang H#, Yu C#, Luo N, Yan J, Zheng S, Hu Q, Zhang D, Kou L, Meng X, Jing Y, Chen M, Ban X, Yan Z, Lu Z, Wu J, Zhao Y, Liang Y, Wang Y, Xiong G, Chu J, Wang E, Li J, Wang B*. (2023) Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architectures in rice. Mol Plant 16(11):1811-1831.
    Highlighted with Spotlight article in Trends Plant Sci., 29(5): 501-503
    Highlighted with Spotlight article in Mol. Plant, 17(1): 19-21
    Highlighted with Spotlight article in Sci. China Life Sci., 67(2): 428-430
    Highlighted with Spotlight article in Chin Sci. Bull., 69(2): 143-145
    11.  Liu S, Wang J, Song B, Gong X, Liu H, Hu Q, Zhang J, Li Q, Zheng J, Wang H*, Xu HE*, Li J*, Wang B*. (2023) Conformational Dynamics of the D53-D3-D14 Complex in Strigolactone Signaling. Plant Cell Physiol. 64(9):1046-1056.
    12.  Li X #, Yan Z#, Zhang M, Wang J, Xin P, Cheng S, Kou L, Zhang X, Wu S, Chu J, Yi C, Ye K, Wang B*, Li J*. (2023). SnoRNP is essential for thermospermine-mediated development in Arabidopsis thaliana. Sci. China Life Sci. 66:2-11. (Cover story)
    13.  Li X#, Lei C#, Song Q, Bai L, Cheng B, Qin K, Li X, Ma B, Wang B, Zhou W, Chen X*, Li J*. (2023) Chemoproteomic profiling of O-GlcNAcylated proteins and identification of O-GlcNAc transferases in rice. Plant Biotechnol. J. 21 (4):742-753.
    14.  Liu H, Liu S, Yu H, Huang X, Wang Y, Jiang L, Meng X, Liu G, Chen M, Jing Y, Yu F, Wang B*, Li J*.(2022) An engineered platform for reconstituting functional multisubunit SCF E3 ligase in vitro. Mol. Plant 15: 1285-1299.
    Highlighted with Spotlight article in Mol. Plant, 15(11): 1654-1655
    15.  Jia M#, Luo N#, Meng X, Song X, Jing Y, Kou L, Liu G, Huang X, Wang Y, Li J, Wang B*, Yu H*. (2022) OsMPK4 promotes phosphorylation and degradation of IPA1 in response to salt stress to confer salt tolerance in rice. J. Genet. Genomics 49: 766-775.
    16.  Song X, Meng X, Guo H, Cheng Q, Jing Y, Chen M, Liu G, Wang B, Wang Y, Li J, Yu H. (2022) Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol.. 40: 1403. (Highly Cited Paper)
    17.  Chen R#, Deng Y#, Ding Y#, Guo J#, Qiu J#, Wang B#, Wang C#, Xie Y#, Zhang Z#, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D*, Liu Y*, Li J*. (2022). Rice functional genomics: decades' efforts and roads ahead. Sci. China Life Sci. 65:33-92. (Highly Cited Paper)
    18.  Wang, B and Li, J. (2021). Rice geographic adaption to poor soil: novel insights for sustainable agriculture. Mol. Plant 14: 369-371.
    19.  Wang, L#, Wang, B#*, Yu H, Guo H, Lin T, Kou L, Wang A, Shao N, Ma H, Xiong G, Li X, Yang J, Chu J, and Li, J*. (2020). Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 583: 277-281. (Highly Cited Paper)
    Highlighted with Spotlight article in Trends Plant Sci., 25(10): 960-963;
    Highlighted with Spotlight article in Mol. Plant, 13(9): 1244-1246;
    Highlighted with Spotlight article in Sci. China Life Sci 63(11): 1768-1770;
    Highlighted with Spotlight article in Chin Bull Bot 55(3): 1-7
    20.  Liu X#, Hu Q#, Yan J#, Sun K, Liang Y, Jia M, Meng X, Fang S, Wang Y, Jing Y, Liu G, Wu D, Chu C, Smith S M, Chu J*, Wang Y, Li J, and Wang B*. (2020). zeta-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. Mol. Plant 13: 1784-1801.
    21.  Wang, L#, Xu, Q#, Yu, H, Ma, H, Li, X, Yang, J, Chu, J, Xie Q, Wang Y, Smith, SM, Li, J, Xiong, G*, and Wang, B*. (2020). Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in Arabidopsis thaliana. Plant Cell 32: 2251-2270. (Highly Cited Paper)
    22.  Wang Y#, Shang L#, Yu H#, Zeng L#, Hu J, Ni S, Rao Y, Li S, Chu J, Meng X, Wang L, Hu P, Yan J, Kang S, Qu M, Lin H, Wang T, Wang Q, Hu X, Chen H, Wang B, Gao Z, Guo L, Zeng D, Zhu X, Xiong G*, Li J*, and Qian Q*. (2020). A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol. Plant 13, 923-932.
    23.  Zheng J#, Hong K#, Zeng L#, Wang L, Kang S, Qu M, Dai J, Zou L, Zhu L, Tang Z, Meng X, Wang B, Hu J, Zeng D, Zhao Y, Cui P, Wang Q, Qian Q, Wang Y, Li J, and Xiong G. (2020). Karrikin Signaling Acts Parallel to and Additively with Strigolactone Signaling to Regulate Rice Mesocotyl Elongation in Darkness. Plant Cell 32, 2780-2805.
    24.  Wang B and Li J (2019). Understanding the molecular bases of agronomic trait improvement in rice. Plant Cell 31: 1416-1417.
    25.  Shao G#, Lu Z#, Xiong J, Wang B, Jing Y, Meng X, Liu G, Ma H, Liang Y, Chen F, Wang Y, Li J, Yu H (2019). Tiller bud formation regulators MOC3 and MOC1 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol Plant. 12, 1090-1102.
    26.  Wang B, Smith SM*, and Li J*. (2018). Genetic control of shoot architecture. Annu. Rev. Plant Biol. 69: 437-468. (Highly Cited Paper)
    27.  Yao R#, Wang L#, Li Y#, Chen L#, Li S, Du X, Wang B, Yan J, Li J*, and Xie D*. (2018). Rice DWARF14 acts as an unconventional hormone receptor for strigolactones. J. Exp. Bot. 69: 2355-2365.
    28.  Bai, S, Yu, H, Wang, B, and Li, J (2018). Retrospective and perspective of rice breeding in China. J. Genet. Genomics 45, 603-612.
    29.  Wang B, Wang Y, Li, J. (2017). Strigolactones. In: Hormone Metabolism and Signaling in Plants (eds. Li J, Li C, Smith SM) Academic Press Elsevier (London UK), 327-359.
    30.  Hu Q#, He Y#, Wang L, Liu S, Meng X, Liu G, Jing Y, Chen M, Song X, Jiang L, Yu H, Wang B*, and Li J* (2017). DWARF14, a receptor covalently linked with the active form of strigolactones, undergoes strigolactone-dependent degradation in rice. Front. Plant Sci. 8: 1935.
    31.  Wang B#, Chu J#, Yu T#, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, and Li J (2015). Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 112: 4821-4826.
    Selected for F1000 Prime
    32.  Wang L#, Wang B #, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, and Li J (2015). Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27: 3128-3142. (Highly Cited Paper)
    Highlighted with an In Brief article in Plant Cell 27(11):3022-3023,
    33.  Zhang R, Wang B, Li J and Wang Y (2008) Arabidopsis Indole synthase (INS), a homolog of Trp synthase (TSA1), is an enzyme involved in Trp-independent metabolites biosynthesis pathway. J Integ Plant Biol 50: 1070-1077.

    Wang B, Li J and Wang Y (2006) Advances in understanding roles of auxin involved in modulating plant architecture. Chin Bull Bot 23: 443-458