姓  名: 许操
    职  称: 研究员
    职  务:
    电话/传真: 010-64803911
    电子邮件: caoxu@genetics.ac.cn
    实验室主页: http://xulab.genetics.ac.cn
    研究方向: 作物分子发育与环境智能品种设计

    简历介绍:

    许操,男,博士,研究员,博士生导师,研究组组长。
        2005年于山东农业大学获理学学士学位,2012年于中国科学院遗传与发育生物学研究所获理学博士学位,2013-2017年在美国冷泉港实验室(Cold Spring Harbor Laboratory)从事博士后研究。2017年8月入职中国科学院遗传发育所,任研究员,博士生导师,研究组长。2017年11月入选中国科学院-英国约翰英纳斯中心植物和微生物科学联合研究中心(Chinese Academy of Sciences-John Innes Centre, CEPAMS),研究员。2019获益海嘉里优秀导师奖,2022获中国青年科技奖,2022年获“国家杰出青年基金”资助,2023年入选国家自然基金委基础科学中心。长期从事作物分子发育与环境适应机制以及环境智能设计育种方面的研究。近年来以通讯作者在Cell, Nature Biotechnology, Nature Genetics, Nature Chemical Biology, Nature Plants等杂志发表创新研究成果,相继在环境智能作物设计育种、作物从头驯化、作物蛋白质相分离以及小肽信号与生命系统稳健性等新领域做出开拓性工作,被Nature, Science, Nature Genetics, Discover等杂志推荐和点评,创制了“顺境高产逆境稳产”的番茄、水稻等主要果蔬和粮食作物新种质。

    研究领域:

    小肽信号与植物环境适应性
        植物的生长发育依赖细胞间的通讯和对话,小肽信号在细胞间穿梭,通过调控细胞通讯决定植物的生长发育与环境适应。我们建立了整合人工智能、合成生物学、基因编辑等技术方法体系,鉴定了大批新的小肽信号,同时明确了其受体和下游信号通路,揭示其调控作物生长发育与环境适应性的分子机制,指导顺境高产逆境稳产作物的分子设计。
    转录凝聚体与植物细胞命运决定
        生物演化在细胞水平上的一个重要体现便是从相对均一的细胞质环境进化出多样化的细胞器结构,不同生物反应以一种时空特异性的方式在不同的细胞器内有序发生从而决定细胞命运。某些蛋白质或核酸分子可以通过多价相互作用发生相分离,在原本均一的环境中产生物理、化学性质相异的另一相,形成无膜细胞器或者亚细胞结构。植物无法像动物那样自由移动,但它演化出更为精妙的以静制动的基因调控程序,我们将以番茄作为研究模式,深入研究蛋白质相分离精准调控植物细胞编程与环境适应性重编程的分子机制,解析其决定生命系统稳健性和发育可塑性的基本规律。 
    环境智能作物设计与机器人育种
        突破作物单产提升瓶颈,实现常态年份(顺境)下能高产、农业灾害(逆境)时能稳产,创制顺境高产逆境稳产的环境智能型作物是保障国家粮食安全的核心路径。我们整合植物进化发育学、作物驯化与演化规律以及发育环境适应性新理论,综合运用人工智能、多维组学、合成生物学、基因编辑、智能机器人等技术,基于实验室创建的环境智能作物设计育种技术体系和从头驯化快速育种技术体系,研发下一代全新育种技术体系,加速创造适应气候变化、符合我国国情和农情的全新智能作物。

    社会任职:

    获奖及荣誉:

    承担科研项目情况:

    代表论著:

    近期发表文章(#Co-corresponding author, *Co-first author):

    1. Huang, X.*, Xiao, N.*, Xie, Y., and Xu, C. (2025). ROS burst prolongs transcriptional condensation to slow shoot apical meristem maturation and achieve heat-stress resilience in tomato. Developmental Cell  DOI:10.1016/j.devcel.2025.03.007.
    2. Yang, D., and Xu, C. (2025). When lettuce bolts: natural selection vs artificial selection and beyond. New Phytologist https://doi.org/10.1111/nph.20402.
    3. Huang, X., Yang, Y., and Xu, C. (2025). Biomolecular condensation programs floral transition to orchestrate flowering time and inflorescence architecture. New Phytologist 245, 88-94.
    4. Lou, H.*, Li, S.*, Shi, Z., Zou, Y., Zhang, Y., Huang, X., Yang, D., Yang, Y., Li, Z., and Xu, C. (2025). Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice. Cell 188, 530-549.e520.
    5. Huang, X., and Xu, C. (2025). Reviving the charm of a century-old classic theory: Engineering source-sink relations to breed climate-smart crops. The Innovation Life 3, 100125.
    6. Liu, N.*, Zou, Y.*, Jiang, Z.*, Tu, L., Wu, X., Li, D., Wang, J., Huang, L. #, Xu, C. #, and Gao, W#. (2024). Multiomics driven identification of glycosyltransferases in flavonoid glycoside biosynthesis in safflower. Horticultural Plant Journal https://doi.org/10.1016/j.hpj.2024.01.016.
    7. Chen, S.*, Zou, Y.*, Tong, X., and Xu, C. (2024). A tomato NBS-LRR gene Mi-9 confers heat-stable resistance to root-knot nematodes. Journal of Integrative Agriculture https://doi.org/10.1016/j.jia.2024.07.017.
    8. Yang, D., Wang, Z., Huang, X., and Xu, C. (2023). Molecular regulation of tomato male reproductive development. aBIOTECH 4, 72-82.
    9. Xie, Y., Zhang, T., Huang, X., and Xu, C. (2022). A two-in-one breeding strategy boosts rapid utilization of wild species and elite cultivars. Plant Biotechnology Journal 20, 800-802.
    10. Kwon, C.-T., Tang, L., Wang, X., Gentile, I., Hendelman, A., Robitaille, G., Van Eck, J., Xu, C.#, and Lippman, Z.#. (2022). Dynamic evolution of small signalling peptide compensation in plant stem cell control. Nature plants 8, 346-355.
    11. Huang, X.*, Xiao, N.*, Zou, Y., Xie, Y., Tang, L., Zhang, Y., Yu, Y., Li, Y., and Xu, C. (2022). Heterotypic transcriptional condensates formed by prion-like paralogous proteins canalize flowering transition in tomato. Genome Biology 23, 78.
    12. Xu, C. (2021). From 0 to 1: de novo domestication of allotetraploid wild rice to create a new crop. Hereditas (Beijing) 43, 199-202.
    13. Huang, X.*, Chen, S.*, Li, W., Tang, L., Zhang, Y., Yang, N., Zou, Y., Zhai, X., Xiao, N., Liu, W., Li, P.#, and Xu, C.# (2021). ROS regulated reversible protein phase separation synchronizes plant flowering. Nature Chemical Biology 17, 549-557.
    14. Tu, L.*, Su, P.*, Zhang, Z.*, Gao, L., Wang, J., Hu, T., Zhou, J., Zhang, Y., Zhao, Y., Liu, Y., Song, Y., Tong, Y., Lu, Y., Yang, J., Xu, C., Jia, M., Peters, R.J., Huang, L. #, and Gao, W#. (2020). Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nature communications 11, 971.
    15. Zhao, H., Qin, Y., Xiao, Z., Li, Q., Yang, N., Pan, Z., Gong, D., Sun, Q., Yang, F., Zhang, Z., Wu, Y., Xu, C., Qiu, F. (2020). Loss of function of an RNA polymerase III subunit leads to impaired maize kernel development. Plant Physiology 184, 359-373.
    16. Rodriguez-Leal, D.*, Xu, C.*, Kwon, C.-T., Soyars, C., Demesa-Arevalo, E., Man, J., Liu, L., Lemmon, Z.H., Jones, D.S., Van Eck, J., Jackson, D.P.#, Bartlett, M.E.#, Nimchuk, Z.L.#, and Lippman, Z.B.# (2019). Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nature Genetics 51, 786-792.
    17. Huang, X., Tang, L., Yu, Y., Dalrymple, J., Lippman, Z.B.#, and Xu, C.# (2018). Control of flowering and inflorescence architecture in tomato by synergistic interactions between ALOG transcription factors. Journal of Genetics and Genomics 45, 557-560.
    18. Li, T.*, Yang, X.*, Yu, Y.*, Si, X., Zhai, X., Zhang, H., Dong, W., Gao, C.#, and Xu, C#. (2018). Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology 36, 1160-1163.
    19. Zhang, N.*, Yu, H.*, Yu, H.*, Cai, Y., Huang, L., Xu, C., Xiong, G., Meng, X., Wang, J., Chen, H., Liu, G., Jing, Y., Yuan, Y., Liang, Y., Li, S., Smith, S.M., Li, J., and Wang, Y. (2018). A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin. The Plant cell 30, 1461-1475.
    20. Xu, C., Park, S.J., Van Eck, J., and Lippman, Z.B. (2016). Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes & Development 30, 2048-2061.
    21. Xu, C.*, Liberatore, K.L.*, MacAlister, C.A., Huang, Z., Chu, Y.-H., Jiang, K., Brooks, C., Ogawa-Ohnishi, M., Xiong, G., Pauly, M., Van Eck, J., Matsubayashi, Y., van der Knaap, E., and Lippman, Z.B. (2015). A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nature Genetics 47, 784-792.
    22. Xu, C.*, Wang, Y.*, Yu, Y. *, Duan, J., Liao, Z., Xiong, G., Meng, X., Liu, G., Qian, Q.#, and Li, J.# (2012). Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nature communications 3, 750.